A journal version of this paper is published in full in Bioelectromagnetics Supplement 7: S86-S97 (2005) This paper is based on a contribution to the World Health Organisation International EMF Project Workshop on Sensitivity of Children to EMF, 9th – 11th June 2004, Istanbul, Turkey # Do magnetic fields cause increased risk of childhood leukaemia via melatonin disruption? Denis L Henshaw¹ and Russel J Reiter² ¹H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK ²Department of Cellular & Structural Biology, MC7762, The University of Texas Health Science Centre, 7703 Floyd Curl Drive, San Antonio, TX78229-3900, USA. Contact: d.l.henshaw@bris.ac.uk Summary: Epidemiological studies have reported associations between exposure to power frequency magnetic fields and increased risk of certain cancer and non-cancer illnesses. For childhood leukaemia, a doubling of risk has been associated with exposures above $0.3/0.4~\mu T$. Here we propose that the melatonin hypothesis in which power frequency magnetic fields suppress the nocturnal production of melatonin in the pineal gland accounts for the observed increased risk of childhood leukaemia. Such melatonin disruption has been shown in animals, especially with exposure to electric and/or rapid on/off magnetic fields. Equivocal evidence has been obtained from controlled laboratory magnetic field exposures of volunteers, although the exposure conditions are generally atypical of neighbourhood exposures. In contrast, support for the hypothesis is found in the body of studies showing magnetic field disruption of melatonin in human populations chronically exposed to both electric and magnetic fields associated with electricity distribution. Further support comes from the observation that melatonin is highly protective of oxidative damage to the human haemopoietic system. Aspects of the hypothesis are amenable to further investigation. #### 1. Introduction Various reports (NIEHS 1999, NRPB 2001a, CHD 2002) have discussed the pooled analyses of epidemiological studies by Ahlbom *et al.* (2000) and Greenland *et al.* (2000), indicating an approximate doubling of risk associated with magnetic field exposures above 0.3/0.4 µT and such fields have been classed as a possible carcinogen (IARC 2002). In addition, there is a body of epidemiological evidence suggesting increased risk of certain other cancer and non-cancer illnesses associated with magnetic field exposures. Currently, the strongest evidence appears to relate to increased risk of Amyotrophic Lateral Sclerosis, ALS (NRPB 2001b, CHD 2002), brain cancer and leukaemia in adults with recent evidence suggesting a link with miscarriage (CHD 2002). The melatonin hypothesis has been widely discussed in terms of exposure to light-at-night, magnetic fields and breast cancer (Cohen *et al.* 1978, Stevens 1987). However, melatonin disruption by magnetic fields might also account for increased risk of the otherwise disparate range of reported adverse health outcomes. Here we apply the hypothesis to specifically to childhood leukaemia, namely that exposure to magnetic fields associated with the electricity supply causes increased risk via the disruption of the nocturnal production of melatonin in the pineal gland. Melatonin (N-acetyl-5-methoxytryptamine) has been identified in a wide range of organisms from bacteria to human beings. Its principal source in man is as the chief secretory product of the pineal gland. This follows a marked circadian rhythm, the majority production occurring at night regulated by non-rod, non-cone receptors in the eye sensing the absence of light. Melatonin is remarkably non-toxic and has been found to be a radical scavenger and antioxidant, more effective than either vitamins C or E *in vivo* (Tan *et al.* 2003). The indoleamine has been found to protect cells, tissues and organs against oxidative damage induced by a variety of free radical generating agents and processes, e.g. the carcinogen safrole, lipopolysaccharide, kainic acid, Fenton reagents, potassium cyanide, ischemia-reperfusion and ionising radiation (Reiter *et al.* 1997). Melatonin is an antioxidant effective in protecting nuclear DNA, membrane lipids and cytosolic proteins from oxidative damage (Allegra *et al.* 2003). It has been reported to alter the activities of enzymes which improve the total antioxidative defence capacity of the organism (Rodriguez *et al.* 2004). Obviously, melatonin's ability to protect DNA from oxidative damage has implications for many types of cancer, including leukaemia, considering that DNA damage due to free radicals is believed to be the initial oncostatic event in a majority of human cancers (Cerutti *et al.* 1994). In addition to cancer, free radical damage in the central nervous system is a significant component of a variety of neurodegenerative diseases of the aged including Alzheimer's disease and Parkinsonism. In experimental animal models of both of these conditions, melatonin has proven highly effective in forestalling their onset and reducing their severity (Reiter *et al.* 2001). Thus, a reduction in melatonin due to any means may be consequential in a number of diseases. ## 2. The melatonin hypothesis The chief source of melatonin in man arises from its synthesis in the pineal gland, the majority production occurring at night triggered by a signal from the eye indicating light falling below a threshold ~10 lux. Recent experiments indicate the presence of non-rod, non-cone receptor cells in the eye which are uniquely responsible for communicating light information to the pineal gland, thereby synchronising regulation of the pineal with the day-night cycle (Freedman *et al.* 1999; Lucas *et al.* 1999, 2001, 2003; Foster & Hankins 2002; Sekaran *et al.* 2003; Hattar *et al.* 2003; Foster & Kreitzman 2004). Cohen *et al.* (1978) suggested that reduced pineal melatonin production, brought about by environmental lighting, might increase human breast cancer risk. This suggestion was followed by Stevens (1987) who noted that breast cancer was a disease of modern life associated with industrialisation. He proposed that the use of electric power may increase the risk of breast cancer. The risk theoretically arose from reduced production of nocturnal melatonin brought about by exposure to two principal agents, namely light-at-night (LAN) from domestic as well as street lighting and magnetic fields associated with the electricity supply. Strong support for LAN affecting breast cancer risk has come from experiments in animals exposed to constant light (Stevens and Davis 1996). Additionally, support in humans comes from the observation of reduced hormone-related cancer rates in the blind and partially sighted and increased breast cancer rates in nightshift workers (e.g. Hahn 1991, Feychting *et al.* 1998, Verkasalo *et al.* 1999, Hansen 2001a & b, Swerdlow 2003). ## 3. Magnetic field suppression of melatonin ## 3.1. Suppression in animals Effects on melatonin by magnetic fields have been studied in a number of animal species. Kato and Shigemitsu (1997) found 6 weeks of exposure to a circularly polarised but not to horizontal or vertically plane-polarised fields, at intensities above $1.4~\mu T$, suppresses plasma and pineal melatonin concentration in Wistar-King rats. The authors also found that the ability to suppress melatonin depended on the degree of ellipticity and field intensity. Polarised fields induce higher currents in the body compared with their plane polarised counterparts. This may be of importance given that human populations are commonly exposed to polarised fields (Ainsbury 2004). Wilson *et al.* (1981) also showed that 65 kV m⁻¹ electric fields were effective in suppressing melatonin in rats exposed for 30 days. Reiter *et al.* (1998) found inconsistent suppression of nocturnal pineal melatonin synthesis and serum melatonin in rats exposed to pulsed DC magnetic fields. The authors suggested that an observed drop on serum melatonin could theoretically be explained by an increased uptake of melatonin by tissues that were experiencing augmented levels of free radicals as a consequence of MF exposure (Reiter 1998). In hamsters, Wilson *et al.* (1999) found reduced pineal melatonin from a combination of exposure to steady-state and on/off magnetic fields for 16 days. Yellon *et al.* (1994) found melatonin suppression by magnetic fields in adult Djungarian (1994) but not adult Siberian hamsters (Yellon *et al.* 1998). Brendel *et al.* (2000) found both 50 and 16^{2/3} Hz Magnetic fields effective in suppressing melatonin production in isolated pineal gland from Djungarian hamsters *in vitro*. In baboons, Rogers *et al.* (1995a) found that a combination of exposure to slow onset electric and magnetic fields were ineffective at suppressing melatonin, but when these fields were applied in a rapid on/off mode, after 9 days exposure melatonin levels were reduced to between 4% and 15% of those pre-exposure (Rogers *et al.* 1995b). The authors suggested that while organisms may adapt to constant conditions, they may be less able to adapt to conditions that are rapidly or randomly changing. Löscher et al. (1993, 1994) and Löscher and Mevissen (1997) carried out a series of experiments which reported direct experimental evidence of the hypothesis of Stevens (1987), showing that chronic exposure to 60 Hz magnetic fields resulted in increased incidence of mammary gland tumours in female Sprague-Dawley rats. The authors pointed out that since melatonin physiologically suppresses oestrogen production by the ovary and prolactin production by the pituitary (Reiter 1991), a melatonin reduction would in turn result in increased oestrogen and prolactin production, and thereby induce increased turnover of the breast epithelial stem cells at risk of malignant transformation. In addition, in view of the oncostatic effect of melatonin on breast cancer growth (Blask 1993), the
development and growth of breast cancer, once initiated, would be facilitated by reduced melatonin levels. Löscher and Mevissen showed increased incidence of mammary tumours with magnetic field exposure in rats treated with the chemical carcinogen 7,12-dimethylbenz[a]anthracene (DMBA). The data were consistent with a monotonic increase in risk from 1 to 100 µT where a 50% increase in tumour risk was observed. Later evidence suggests that this result is species dependent, owing to varying sensitivities to DMBA (Anderson et al. 2000, Fedrowitz et al. 2004). In relation to human breast cancer, Ishido *et al.* (2001) amongst others have shown that *in vitro* 1.2 μT magnetic fields suppress the anti-proliferative action of physiologically relevant concentrations of melatonin in inhibiting the growth of MCF-7 breast cancer cells. Epidemiological studies have generally suggested a small increased risk of breast cancer with magnetic field exposures (Erren 2001), although higher risks have been reported when both residential and occupational exposures are taken into account (Kliukiene *et al.* 2004). ## 3.2 Suppression in humans The central question is whether exposure to typical neighbourhood power frequency magnetic fields to which human populations are exposed either reduces or otherwise disrupts the nocturnal production of melatonin in the pineal gland. This has been addressed in both laboratory and observational (population) studies. ## 3.2.1 Laboratory controlled acute exposures Considerable effort has been placed in studies in which volunteers were exposed to laboratory generated magnetic fields well above those usually encountered by the general population and melatonin assayed either by levels in blood (plasma melatonin) or by measurement of the melatonin metabolite 6-hydroxymelatonin sulphate (6-OHMS) in urine (e.g. Crasson *et al.* 2001, Graham *et al.* (1996a, b), Griefahn *et al.* 2001, Hong *et al.* 2001, Kurokawa *et al.* 2003, Selmaoui *et al.* 1996, 1997, 2003, Warman *et al.* 2003a & b, Wood *et al.* 1998). The rationale for volunteer studies is that exposures can be well characterised and control for factors such as light exposure is better achieved in laboratory conditions. Some studies also attempted to mimic neighbourhood fields by artificially imposing on/off and transient features (Crasson *et al.* and Kurakawa *et al.*). Graham *et al.* (1996a) reported that men with pre-existing low levels of melatonin showed significantly greater suppression of melatonin when they were exposed to light and also when exposed to 20 µT magnetic fields for 8 hours on one night. However, this finding was not confirmed in their later study (1996b). With the exception of Wood *et al.* (1998) discussed below, the other short-term exposed volunteer studies have failed to provide statistically significant evidence of melatonin suppression although some show effects short of statistical significance (e.g. Crasson *et al.* 2001, Selmaoui *et al.* 1996, Hong *et al.* 2001). However, while these volunteer studies have been carefully designed and well-controlled, they nevertheless have a number of drawbacks: (i) the relatively small number of volunteers limits the ability statistically to resolve changes in melatonin secretion against the natural variations between individuals; (ii) exposures have tended to be for short periods compared with chronic exposures in real populations when the evidence in animals suggests that several days or weeks of exposure are required before effects on melatonin secretion become manifest; (iii) laboratory generated exposures may not contain features such as transients or rapid on/off changes in magnetic fields which have been shown effective in demonstrating melatonin suppression in animals and (iv) volunteer studies have not included exposure to electric fields which may also factor in melatonin disruption. ## 3.2.1 Longer term and chronic exposures In contrast to the volunteer studies with short-term exposure, there is now a body of studies involving either longer term or chronic magnetic field exposures which taken together show evidence of nocturnal melatonin disruption. These are listed in table 1, numbered 1 to 14: Wilson et al. 1990, Pfluger et al. 1996, Burch et al. 1998, Wood et al. 1998, Burch et al. 1999a & 2000, Juutilainen et al. 2000, Graham et al. 2000, Davis et al. 2001, Levallois et al. 2001, Burch et al. 2002, Touitou et al. 2003, Burch et al. 1999b and Weydahl et al. 2001. The two latter studies, [13, 14], looked at the effects of geomagnetic disturbances. Apart from [4 & 14] which measured plasma melatonin only, all other studies assayed 6-OHMS in morning urine samples. Study 12 additionally measured plasma melatonin. Three volunteer studies [1, 4 & 8] are included which involved longer as apposed to one-off acute exposure. In [1], while overall melatonin disruption was not seen in electric blanket users, an approximate 25% reduction in overnight 6-OHMS was seen in seven individuals who slept with CPW electrc blankets which produced 50% higher magnetic fields and which switched on and off at twice the rate of conventional blankets. In [4], exposure to 20 µT 50 Hz fields during a certain time window caused a mean 1 h delay in nightly melatonin onset in a subset of subjects, with square-wave fields producing a more marked effect compared with sinusoidal fields. In [8], repeated nightly exposure to circularly polarised 28.3 µT 60 Hz fields was associated with reduced consistency of 6-OHMS levels and the results were suggestive of a cumulative effect. Study [12] found no evidence of nocturnal melatonin disruption in men who lived and worked near extra high voltage substations, but the sample size of 15 is small compared with other studies involving chronic exposure. The remaining chronic exposure studies in table 1 all report evidence of nocturnal melatonin disruption with suppression values ranging up to 50% at low average field exposures. For example, the geometric mean exposure in [6] was in the range $0.04 - 0.27 \mu T$ and [9] compared melatonin secretion between average exposures >0.2 and $<0.2~\mu T$. The findings in relation to geomagnetic disturbances are particularly noteworthy because of the level and transient nature of the fields. Study [13] reported a statistically significant 20% reduction in 6-OHMS levels for disturbance levels >30 compared with <30 nT and study [14] found an approximate 50% reduction in plasma melatonin for a 330 nT span in disturbances. It can be inferred that in seven studies, [2, 3, 5, 6, 10, 11, & 12] there was additional exposure to powerline electric fields, although exposure values are only given in [10]. Of potential interest is that electric fields induce currents in both the eye humor and the pineal gland well in excess of endogenous currents (Furse & Gandhi. 1998). Some studies specifically involve exposure to transient or switched fields [1, 4, 13 & 14], while study [7] in women sewing machinists would have likely involved exposed to on/off fields. Overall, in table 1, eleven studies show evidence of melatonin disruption by power frequency magnetic fields and two by geomagnetic field disturbances. In some cases there is evidence of a dose response effect and disruption for exposures to fields below $0.3/0.4~\mu T$. #### 4. Childhood leukaemia and melatonin Currently there is no appropriate animal model for acute lymphoblastic leukaemia (ALL), the predominant leukaemia subtype in children. In contrast, acute myeloid leukaemia in CBA mice is an established model for adult leukaemia. Anisimov *et al.* (2004) have shown that in addition to other tumours, leukaemia can be induced in CBA mice exposed to constant light, a finding interpreted as due to melatonin suppression. ## 4.1 Melatonin protects against oxidative damage to the human haemopoietic system The potential importance of melatonin suppression to leukaemia risk arises from the observation that the indoleamine is highly protective of oxidative damage to the human haemopoietic system. Vijayalaxmi et al. (1996) administered 300 mg of melatonin to four healthy volunteers. Immediately, and one and two hours later, blood samples were taken and irradiated with 1.5 Gy ¹³⁷Cs gamma radiation. Compared with blood samples taken immediately, those taken at two hours had significantly decreased (50 - 70%) chromosome aberrations and micronuclei. The authors concluded that the observations may have important implications for the protection of human lymphocytes from genetic damage induced by free radical-producing mutagens and carcinogens. The authors investigated the mechanism of melatonin protection in terms of both direct scavenging in the cell nucleus of radiation-induced free radicals, including the hydroxyl radical and action at the cell membrane and in the cytosol to trigger activation of existing DNA repair enzymes and/or activation of a set of genes that lead to de novo protein synthesis associated with DNA repair (Vijayalaxmi et al. 1998). In a further experiment, Vijayalaxmi et al. (1999) irradiated mice with 8.15 Gy gamma radiation untreated and pre-treated with 125 and 250 mg melatonin. In the untreated mice, 45% were alive after 30 days, but 85% were still alive in those pre-treated with 250 mg melatonin. There is another issue which relates more directly to leukaemia and melatonin suppression. A variety of bone marrow cells have been shown to produce melatonin (Tan *et al.* 1999, Conti *et al.* 2000, Carrillo-Vico *et al.* 2004). While its specific function in these cells remain unknown, if their levels are depressed by magnetic field exposure (as has been shown to be the case for pineal melatonin in a variety of studies) it could have clear implications for leukaemia. A reduction in melatonin in the leucocytic precursor cells would be expected to enhance free radical-mediated DNA damage, thereby increasing the likelihood of these cells developing tumours. ## 4.2 Melatonin
protects against oxidative damage to the fetus in animals There is compelling evidence that the initiating event(s) in childhood (ALL) appear to take place *in utero* (Greaves 2002). It is therefore of interest to note that in animals melatonin has been shown to be highly protective of oxidative damage to the fetus (Wakatsuki *et al.* 1999a, b, 2001, Okatani *et al.* 2000). Nakamura *et al.* (2001) showed that in pregnant women, serum melatonin shows a diurnal rhythm which increases after 24 weeks gestation until term, and levels are related to the feto-placental unit. Okatani *et al.* (1998) showed that there is efficient maternal-fetal transfer of melatonin near term. These observations may reflect a role for melatonin in protecting the human fetus against oxidative damage. #### 5. Discussion ## 5.1 Melatonin suppression by magnetic fields A feature of experiments in animals is that prolonged expose, from days to weeks was required to suppress melatonin and in rats effects were induced at relatively low fields (Kato & Shigemitsu 1997). There was also a suggestion that the effects of electric fields and/or rapid onset/offset magnetic fields may be particularly effective in suppressing melatonin. Such features characterise many of the exposures in table 1 and transients magnetic fields are characteristic of neighbourhood exposures generally (Kaune *et al.* 2000). The findings from acute laboratory exposures contrast sharply with those in animals and in long term or chronically exposed populations, but as already discussed laboratory exposures have a number of drawbacks. Another issue is the control fields to which volunteers were exposed. For example, Warman *et al.* (2003b) employed acute exposes up to 300 μ T and found no real evidence of melatonin disruption. However, their control level is given as <0.2 μ T, which could be seen as the region where chronic exposure still results in nocturnal melatonin suppression. The situation might parallel that for visible light where linearity of pineal response extends from ~10 to 200 lux but higher exposures up to 50,000 lux have little influence on melatonin levels (Zeitzer *et al.* 2000). The longer term and chronic exposure studies in table 1 lend support for melatonin disruption as assayed from the melatonin metabolite 6-OHMS in urine. However, the exposure conditions differ between studies which were carried out at different times of the year and at widely different locations. As such it is difficult to compare studies with respect to factors such as latitude, season and light-at-night all of which may affect melatonin secretion. This suggests that a programme of further human population studies could usefully be carried out but with better defined and agreed protocols (see also recommendations in Warman *et al.* 2003a). This should include better characterisation of EMF exposures including electric fields, polarisation and transients. Central to future work is the specific effect of EMF exposure on melatonin in children. In the unborn human fetus melatonin synthesis does not occur. Instead, melatonin may be supplied by transplacental transfer from the mother (Okatani *et al.* 1998). Interestingly, maternal melatonin production increases throughout pregnancy (Nakamura *et al.* 2001). Newborns do not produce significant amounts of melatonin until 6 months after birth (Tauman *et al.* 2002). Thus, during fetal development and in early life there is a relative deficiency of melatonin. In a longitudinal study of 46 boys and 38 girls, Griefahn *et al.* (2003) showed that despite the huge inter-individual differences, melatonin production remains constant in the same individual during childhood and adolescence (from age 3 to 18). The authors attribute other reports of a decrease in plasma melatonin in the young to an increase in body size rather than to decreasing pineal secretion. ## 5.2 Mechanisms of EMF interaction with melatonin While there is evidence that chronic exposure to magnetic and/or electric fields associated with the electricity supply disrupts melatonin in humans, the detailed steps involved have not been established. In animal species, some experiments suggest retinal involvement in responding to magnetic fields, while others also suggest involvement of the pineal itself (Semm et al. 1980, Welker et al. 1983, Reuss et al. 1983, Olcese et al. 1985, Raybourn 1983). In general, pulsed, static and time-varying magnetic fields have been shown to reduce various parameters of melatonin production in the mammalian pineal gland and, in some reports, circulating levels of melatonin in the blood, but in a rather inconsistent way. Those aspects of melatonin biosynthesis which have been reported to be influenced by magnetic fields include a reduction in the activity of the rate-limiting enzyme in melatonin production, i.e., N-acetyltransferase (NAT), and a suppression in the activity of the melatonin-forming enzyme, hydroxyindole-O-methyltransferase (HIOMT) (Fig. 1). Additionally, the serotonin concentrations within the pineal gland have been found to be elevated. These combined changes are consistent with a reduction in the conversion of serotonin to melatonin (Reiter 1993). While each of these observations have been reported, these parameters have not been measured in a single experiment and different outcomes have been achieved in different studies (Warman et al. 2003a). The findings are further confounded by the fact that, as indicated above, melatonin synthesis occurs in a number of organs in addition to the pineal gland, including in the bone marrow which gives rise to leukocytes. Also, melatonin in an organism is not in equilibrium; thus, much higher levels of melatonin are found in some bodily fluids (e.g., in cerebrospinal fluid and bile) and whether they are influenced by magnetic fields has not been tested. Finally, mechanistically how magnetic fields influence the conversion of serotonin to melatonin within the pineal gland has never been adequately determined. Several theoretical explanations have been advanced including: (a) magnetic fields are detected by photoreceptors in the eye which is interpreted as "light" with the resultant inhibition of melatonin; (b) an action of the fields at the level of the biological clock, i.e., the suprachiasmatic nuclei, which causes it to send an appropriate signal to the pineal gland thereby either reducing the amount of melatonin or altering its rhythm; and (c) a direct interaction of the magnetic fields with the melatonin synthetic machinery in the pinealocytes themselves (Fig. 2). More recently, another potential mechanism has been proposed which involves the generation of free radicals by the magnetic fields thereby reducing melatonin levels due to the fact that the indole is more rapidly used as it scavenges radicals; this would lead to a depression in blood and tissue melatonin levels without interfering with its synthesis (Reiter 1998). Of additional interest, birds are know to be able to detect very small changes in the Earth's DC magnetic field and Ritz *et al.* (2004) have shown that robins can detect fields as low as 0.084 µT, consistent with a resonance effect on singlet-triplet transitions in a radical pair reaction. While each of these above proposed mechanisms may be logical, experimental support for any one of them in humans is incomplete. If, in fact, melatonin levels or free radical generation are altered by magnetic fields, a potential relationship between these fields and cancer, including leukaemia, would be possible. A reduction in melatonin has been linked to cancer initiation as well as to cancer progression. As an antioxidant, in many studies melatonin has been shown to protect DNA from oxidative damage; once damaged, DNA may mutate and carcinogenesis may occur. With depressed melatonin levels this possibility is enhanced. Likewise, lower than normal melatonin levels may exaggerate the growth of tumors since: (a) melatonin inhibits the uptake of fatty acid growth factors by cancer cells; (b), melatonin inhibits telomerase activity in cancer cells thereby reducing telomere length and increasing the likelihood of cancer cells undergoing apoptosis (Leon-Blanco et al. (2004); (c) melatonin inhibits endothelin-1 synthesis; endothelin-1 is a potent angiogenic factor which promotes blood vessel growth in tumors (Bagnato and Natal 2004). While all these explanations are possibilities, no studies have established a definitive link between magnetic field exposure, melatonin and cancer, including leukaemia. Overall, therefore, the hypothesis that magnetic fields cause increased risk of childhood leukaemia via melatonin disruption is plausible but key aspects remain to be tested. ## 6. Future epidemiological and laboratory investigations Many of the aspects of the hypothesis presented here can be investigated either epidemiologically or in experimental laboratory studies. It is clear from table 1 that there is scope for further human studies of melatonin disruption in populations exposed to both electric and magnetic fields. The non-invasive nature of the 6-OHMS assay is such that it could be applied specifically to children. At the same time it would be useful to probe in more detail the role of melatonin in the fetus and neonate. Following the work of Vijayalaxmi *et al.* (1996, 1998 & 1999) and Ishido *et al.*, (2001) cited above, experiments could be carried out using cells of the human haemopoietic system in the presence of both melatonin and magnetic fields. This would test whether magnetic fields act directly in inhibiting the protectiveness of melatonin on the haemopoietic system. Finally, the incidence of childhood leukaemia has increased steadily in recent decades in most developed countries (e.g. Steliava-Foucher *et al.* 2004). The causes of childhood leukaemia are largely unknown. However, if magnetic fields cause increased risk via melatonin disruption, then certainly exposure to
light-at-night should do likewise. While previously unconsidered, the latter could then turn out to be an important factor in the aetiology of the disease. ## Acknowledgements We thank Julie Close for help in searching and collating the scientific literature. This work is partially supported by CHILDREN with LEUKAEMIA, Registered Charity No. 298405 (England & Wales). ## References - Ahlbom, A., Day, N, Feychting, M., Roman, E., Skinner, J., Dockerty, J., McBride, M., Michaelis, J., Olsen, J. H., Tynes, T., Verkasalo, P. K. 2000. A pooled analysis of magnetic fields and childhood leukaemia, *Brit. J. Cancer*, **83**(5): 692-698. - Ainsbury E. 2004 An investigation into the vector ellipticity of ELF magnetic fields from appliances in UK homes. Submitted to *Physics in Medicine and Biology*. - Allegra, M., Reiter, R. J., Tan D.-X., Gentile, C., Tesoriere, L., Livrea, M. A. 2003. Minireview: The chemistry of melatonin's interaction with reactive species. *J. Pineal Res.*, **34:** 1-10. - Anderson, L. E., Morris, J. E., Sasser. L. B., Loscher W. 2000. Effects of 50- or 60-hertz, 100 microT magnetic field exposure in the DMBA mammary cancer model in Sprague-Dawley rats: possible explanations for different results from two laboratories. *Environ Health Perspect.*, **108**(9): 797-802. - Anisimov, V. N., Baturin, D. A., Popovich, I. G., Zabezhinski, M. A., Manton, K. G., Semenchenko, A. V., Yashin, A. I. 2004. Effect of exposure to light-at-night on life span and spontaneous carcinogenesis in female CBA mice. *Int. J. Cancer*, **111:** 475-479. - Bagnato, A., Natal, P. G. 2004. Targeting endothelin axis in cancer. *Cancer Treat. Res.*, 119: 293-214 - Blask, D. E. 1993. Melatonin in oncology. In: *Melatonin: Biosynthesis, Physiological Effects and Clinical Applications*. Eds: H S Yu and R J Reiter. Publishers: CRC Press, Boca Raton, Florida, pp 447 475. - Brendel, H., Neihaus, M., and Lerchl, A., 2000. Direct suppressive effects of weak magnetic fields (50 Hz and 16^{2/3} Hz) on melatonin synthesis in the pineal gland of Djungarian hamsters (*Phodopus sungorus*) *J. Pineal Res.*, **29**, 228-233. - Burch, J.B., Reif, J.S., Yost, M.G., Keefe, T.J., Pitrat, C.A. 1998. Nocturnal excretion of a urinary melatonin metabolite among electric utility workers. *Scand. J. Work Environ. Health*, **24**(3): 183-189. - Burch, J. B., Reif, J. S., Yost, M. G., Keefe, T. J., Pitrat, C. A. 1999a. Reduced excretion of a melatonin metabolite in workers exposed to 60 Hz magnetic fields. *Am. J. Epidemiol.*, **150**: 27-36. - Burch, J. B., Reif, J. S., Yost, M. G. 1999b. Geomagnetic disturbances are associated with reduced nocturnal excretion of a melatonin metabolite in humans. *Neuroscience Lett.*, **266**: 209-212. - Burch, J. B., Reif, J. S., Noonan, C. W., Yost, M. G. 2000. Melatonin metabolite levels in workers exposed to 60 Hz magnetic fields: Work in substations and with 3-phase conductors. *J.Occup. Environ. Med.*, **42**(2): 136-142. - Burch, J. B., Reif, J. S., Noonan, C. W., Ichinose, T., Bachand, A. M., Koleber, T. L., Yost, M. G. 2002. Melatonin metabolite excretion among cellular telephone users. *Int. J. Radiat. Biol.*, **78**: 1029-1036. - CHD: California Health Department, 2002 An evaluation of the possible risks from electric and magnetic fields (EMFs) from power lines, internal wiring, electrical occupations and appliances. (Eds: Neutra, DelPizzo and Lee). California EMF Program, 1515 Clay Street, 17th Floor, Oakland, CA 94612, USA. http://www.dhs.ca.gov/ehib/emf/RiskEvaluation/riskeval.html - Carbollo, M. A., Hoyos, M. A., Fernandez, U. J., Castroviejo, A. D., Font, M. J. A. 1996. Pineal functioning (melatonin levels) in healthy children of different ages. An update and value of pineal gland study in pediatrics. *An Esp. Pediatr.* **45**(1): 33-44. - Carrillo-Vico, A., Calvo, J. R., Abreu, P., Lardone, P. J., Garcia-Mauriño, S., Reiter, R. J., Guerrero, J. M. 2004. Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. *The FASEB Journal* (express article), 10.1096/fj.03-0694fje. (Published online 08.01.04). - Cerutti, P., Ghosh, K., Dye, Y., Omstad, P. 1994. The role of the cellular antioxidant defence in oxidant carcinogenesis. *Environ. Health Perspect.* **102** (Suppl. 10): 123-129. - Cohen, M., Lippman, M., Chabner, B. 1978. Role of pineal gland in aetiology and treatment of breast cancers. Lancet 2: 814-816. - Conti, A., Conconi, S., Hertens, E., Skwarlo-Sonta, K., Markowska, M., Maestroni, G.J.M, 2000. Evidence for melatonin synthesis in mouse and human bone marrow cells. *J. Pineal Res.*, **28**: 193-202. - Crasson, M., Beckers, V., Pequeux, Ch., Claustrat, B., Legros, J. J. 2001. Daytime 50 Hz magnetic field exposure and plasma melatonin and urinary 6-sulfatoxymelatonin concentration profiles in humans. *Journal of Pineal Research*, **31:** 234-241. - Davis, S., Kaune, W. T., Mirick, D. K., Chen, C., Stevens, R. G. 2001. Residential Magnetic Fields, Light-at-Night, and Nocturnal Urinary 6-Sulfatoxymelatonin Concentration in Women. *Am. J. Epidemiol.*, **154**(7): 591-600. - Erren, T. C. 2001. A meta-analysis of epidemiologic studies of electric and magnetic fields and breat cancer in women and men. *Bioelectromagnetics*, **Supplement 5**: S105-S119. - Fedrowitz, M., Kamino, K., Löscher, W. 2004. Significant Differences in the Effects of Magnetic Field Exposure on 7,12-Dimethylbenz(a)anthracene-Induced Mammary Carcinogenesis in two Substrains of Sprague-Dawley Rats. *Cancer Res.*, **64:** 243-251. - Feychting M, Österlund B., Ahlbom A. 1998. Reduced cancer incidence among the blind. *Epidemiology*, **9**: 490-4. - Foster, R. G., Hankins, M. W. 2002. Non-rod, non-cone photoreception in the vertebrates, *Progress in Retinal and Eye Research*, **21:** 507-527. - Foster R. G., Kreitzman, L. 2004. Rhythms of life: The biological clocks that control the daily lives of every living thing. *Profile Books*, London. - Freedman, M. S., Lucas, R. J., Soni, B., Schantz, von M., Munoz, M., David-Gray Z. K., Foster, R. G. 1999. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors., *Science*, **284**: 502-504. - Furse, C. M., Gandhi, O. P. 1998. Calculation of electric fields and currents induced in a millimeter-resolution human model at 60 Hz using the FDTD method. *Bioelectromagnetics*. **19**: 293-299. - Graham, C., Cook, M. R., Riffle, D. W., Gerkovich, M. M., Cohen, H. D. 1996a. Nocturnal melatonin levels in human volunteers exposed to intermittent 60 Hz magnetic fields. *Bioelectromagnetics*, 17: 263-273. - Graham, C., Cook, M. R., Riffle, D. W. 1996b. Human melatonin during continuous magnetic field exposure. *Bioelectromagnetics*, **18**: 166-171. - Graham, C., Cook, M. R., Sastre, A., Riffle, D. W., Gerkovich, M. M. 2000. Multi-night exposure to 60 Hz magnetic fields: Effects on melatonin and its enzymatic metabolite. *J. Pineal Res.*, **28**: 1-8. - Greaves, M. 2002. Clinical Review: Science, medicine and the future Childhood leukaemia. *BMJ*, **324**: 283-287. - Greenland, S., Sheppard, A. R., Kaune, W. T., Poole, C., Kelsh, M. A. 2000. A pooled analysis of magnetic fields, wire codes and childhood leukaemia. *Epidemiology*, **11:** 624-634. - Griefahn, B., Künemund, C., Blaszkewicz, M., Golka, K., Mehnert, P., Degen, G., 2001. Experiments on the effects of a continuous 16.7 Hz magnetic field on melatonin secretion, core body termperature, and heart rates in humans. *Bioelectromagnetics*, 22: 581-588. - Griefahn, B., Brode, P., Blaszkewicz, M., Remer, T. 2003. Melatonin production during childhood and adolescence: a longitudinal study on the excretion of 6-hydroxymelatonin sulfate. *J. Pineal Res*, **34:** 26-31. - Hahn, R. A. 1991. Profound bilateral blindness and the incidence of breast cancer. *Epidemiology*, **2**: 208-210. - Hansen, J. 2001a. Increased Breast Cancer Risk among Women Who Work Predominantly at Night. *Epidemiology*, **12**: 74-77. - Hansen, J. 2001b. Light at Night, Shiftwork, and Breast Cancer Risk. *J. Nat. Cancer Institute*, **93**(20): 1513-1515 - Hattar, S., Lucas, R. J., Mrosovsky, N., Thompson, S., Douglas, R. H., Hankins, M. W., Lem, J., Biel, M., Hofmann, F., Foster R. G., Yau, K. W. 2003. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. *Nature*, **424**: 75-81. - Hong, S. C., Kurokawa, Y., Kabuto, M., Ohtsuka, R. 2001. Chronic exposure to ELF magnetic fields during night sleep with electric sheet: Effects of diurnal melatonin rhythms in men. *Biolectromagnetics*, **22:** 138-143. - IARC Monographs of the Evaluation of Carcinogenic Risks to Humans, 2002. Non-Ionizing Radiation, Part 1: Static and Extremely Low-Frequency (ELF) Electric and Magnetic Fields. Volume 80, 19-26 June 2001, IARC Press, 150 Cours Albert Thomas, F-69372 Lyon Cedex 08, France. - Ishido, M., Nitta, H., Kabuto, M. 2001. Magnetic fields (MF) of 50 Hz at 1.2 μT as well as 100 μT cause uncoupling of inhibitory pathways of adenylyl cyclase mediated by melatonin 1a receptor in MF-sensitive MCF-7 cells. *Carcinogenesis*, **22**(7): 1043-1048. - Juutilainen, J., Stevens, R. G., Anderson, L. E., Hansen, N. H., Kilpeläinen, M., Kumlin, T., Laitinen, J. T., Sobel, E., Wilson, B. W. 2000. Nocturnal 6-hydroxymelatonin sulfate excretion in female workers exposed to magnetic fields. *J. Pineal Res.*, **28**: 97-104. - Kato, M., Shigemitsu, T. 1997. Effects of 50-Hz Magnetic Fields on Pineal Function in the Rat. In: *The Melatonin Hypothesis "Breast Cancer and Use of Electric Power"*, Eds: Stevens *et al.* Battelle Press, Columbus, Richland. pp 337-376. - Kaune, W. T., Bracken, T. D., Senior, R. S., Rankin, R. F., Niple, J. C., Kavet, R. 2000. Rate of occurrence of transient magnetic field events in U.S. residences. *Bioelectromagnetics*, **21:** 197-213. - Kliukiene,
J., Tynes, T., Andersen, A. 2004. Residential and Occupational Exposures to 50-Hz Magnetic Fields and Breast Cancer in Women: A Population-based Study. *Am. J. Epidemiol.*, **159:** 852-861. - Kurokawa, Y., Nitta, H., Imai, H., Kabuto, M. 2003. Acute exposure to 50 Hz magnetic fields with harmonics and transient components: Lack of effects on nighttime hormonal secretion in men. *Bioelectromagnetics*, **24:** 12-20. - Leon-Blanco, M. M., Guerrero, J. M., Reiter, R. J., Calvo, J. R., Pozo, D. 2004. Melatonin inhibits telomerase activity in MCF-7 tumor cell line both in vivo and in vitro. *J Pineal Res*, **35**: 204-211. - Levallois, P., Dumont, M., Touitou, Y., Gingras, S., Mâsse, B., Gauvin, D., Kröger, E., Bourdages, M., Douville, P. 2001. Effects of Electric and Magnetic Fields from High-power Lines on Female Urinary Excretion of 6-Sulfatoxymelatonin. *Am. J. Epidem.*, **154**(7): 601-609. - Löscher W., Mevissen M., Lehmacher W., Stamm A. 1993. Tumor promotion in a breast cancer model by exposure to a weak alternating magnetic field. *Cancer Lett.*, **71**: 75-81. - Löscher W., Wahnschaffe U., Mevissen M., Lerchl A., Stamm A. 1994. Effects of weak alternating magnetic fields on nocturnal melatonin production and mammary carcinogenesis in rats. *Oncology*; **51**: 288-295. - Löscher W, Mevissen M. 1997. Magnetic Fields and Breast Cancer: Experimental Studies on the Melatonin Hypothesis. In: Stevens R. G., Wilson B. W., Anderson L.E. (Eds). The Melatonin - Hypothesis Breast Cancer and Use of Electric Power. Battelle Press, Columbus, Richland,. 1997: 555-584. - Lucas, R. J., Freedman, M. S., Munoz, M., Garcia-Fernandez, J. M., Foster, R. G. 1999. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors, *Science*, **284**: 505-507. - Lucas, R. J., Douglas R. H., Foster, R. G. 2001. Characterization of an ocular photopigment capable of driving pupillary constriction in mice, *Nat. Neurosci*, **4:** 621-626. - Lucas, R. J., Hattar, S., Takao, M., Berson, D. M., Foster R. G., Yau, K. W. 2003. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice, *Science*, 299: 245-247. - Nakamura, Y., Tamura, H., Kashida, S., Takayama, H., Yamagata, Y., Karube, A., Sugino, N., Kato, H. 2001. Changes of serum melatonin level and its relationship to feto-placental unit during pregnancy. *J. Pineal Res.*, **30**: 29–33. - NIEHS: National Institute of Environmental Health Sciences, 1999, NIEHS Report on Health Effects from Exposure to Power-Line Frequency Electric and Magnetic fields. *NIH Publication* No. 99-4493, P. O. Box 12233, Research Triangle Park, NC 27709. - NRPB: National Radiological Protection Board, 2001a. ELF Electromagnetic Fields and the Risk of Cancer: Report of an Advisory Group on Non-ionising Radiation. *Documents of the NRPB*, **12**, No. 1. - NRPB: National Radiological Protection Board, 2001b. ELF Electromagnetic Fields and Neurodegenerative Disease: Report of an Advisory Group on Non-ionising Radiation. *Documents of the NRPB*, **12**, No. 4. - Okatani Y, Okamoto K, Hayashi K, *et al*, 1998. Maternal-fetal transfer of melatonin in pregnant women near term. *J. Pineal Res.*, **25**: 129-134. - Okatani, Y., Wakatsuki, A., Kaneda, C. 2000. Melatonin increases activities of glutathione peroxidase and superoxide dismutase in fetal rat brain. *J. Pineal Res.*, **28**: 89-96. - Olcese, J., Reuss, S., Vollrath, L. 1985. Evidence for the involvement of the visual system in mediating magnetic field effects on pineal melatonin synthesis in the rat. *Brain Research*, **333**: 382-384 - Pfluger, D.H., Minder, C.E. 1996. Effects of exposure to 16.7 Hz magnetic fields on urinary 6-hydroxymelatonin sulfate excretion of Swiss railway workers. *J. Pineal Res.*, **21**: 91-100. - Raybourn, M. S. 1983. The effects of direct-current magnetic fields on turtle retinas in vitro. *Science*. **220:** 715-717. - Reiter, R. J. 1991. Pineal melatonin: Cell biology of its synthesis and of its physiological interactions. *Endocrine Rev.*, **12**: 151-180. - Reiter, R. J. 1993. Static and extremely low frequency electromagnetic field exposure: reported effects on the circadian production of melatonin. *J. Cell Biochem.*, **51**: 394-404. - Reiter, R. J. 1998. Melatonin in the context of the reported bioeffects of environmental electromagnetic fields. *Bioelectrochemistry and Bioenergetics*, **47**: 135-142 - Reiter, R., Tang, L., Garcia, J.J. *et al*, 1997. Pharmacological actions of melatonin in oxygen radical pathophysiology. *Life Sciences*, **60**(25): 2255-2271. - Reiter, R. J., Tan, D. X., Poeggeler, B. and Kavet, R., 1998. Inconsistent suppression of nocturnal pineal melatoin synthesis and serum melatonin levels in rats exposed to pulsed DC magnetic fields. *Bioelectromagnetics*, **19**, 318-329. - Reiter, R. J., Acuna-Castroviejo, D., Tan, D. X., Burkhardt, S. 2001. Free radical-mediated molecular damage Mechanisms for the protective actions of melatonin in the central nervous system. *Neuroprotective Agents Annals of the New York Academy of Sciences*, **939**: 200-215. - Reuss, S., Semm, P., Vollrath, L. 1983. Different types of magnetically sensitive cells in the rat pineal gland. *Neuroscience Lett.*, **40**: 23-26. - Ritz, T., Thalau, P., Phillips, J.B., Wiltschko, R., Wiltschko, W. 2004. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. *Nature*, **429**: 177-180. - Rodriguez, C., Mayo, J. C., Sainz, R. M., Antolin, I., Herrera, F., Martin, V., Reiter, J. R. 2004. Minireview. Regulation of antioxidant enzymes: a significant role for melatonin. *J. Pineal Res.*, **36**: 1-9. - Rogers, W. R., Reiter, R. J., Orr, J. L. 1995a. Effects of exposure to 60-Hz EMF on melatonin in non-human primates might depend on specific aspects of field exposure. In: *The Melatonin Hypothesis* - "Breast Cancer and Use of Electric Power", Editors: R G Stevens, B W Wilson, L E Anderson, ISBN 1-57477-020-9, Publishers: Battelle Press, Columbus, Richland. pp 429-478. - Rogers, W. R., Reiter, R. J., Smith, H. D., Barlow-Walden, L. 1995b. Rapid-onset/offset, variably scheduled 60 Hz electric and magnetic field exposure reduces nocturnal serum melatonin concentration in nonhuman primates. *Bioelectromagnetics Supplement 3*: 119-122. - Sekaran, S., Foster, R. G., Lucas R. J., Hankins, M. W. 2003. Calcium imaging reveals a network of intrinsically light-sensitive inner-retinal neurons, *Curr Biol*, **13**: 1290-1298. - Selmaoui, B., Lambrozo, J., Touitou, Y. 1996. Magnetic fields and pineal functions in humans: Evaluation of nocturnal acute exposure to extremely low frequency magnetic fields on serum melatonin and urinary 6-Sulfatoxymelatonin circadian rhythms. *Life Sciences*, **58**: 1539-1549. - Selmaoui, B., Lambrozo, J., Touitou, Y. 1997. Endocrine functions in young men exposed for one night to a 50-Hz magnetic field. A circadian study of pituitary, thyroid and adrenocortical hormones. *Life Sciences*, **61:** 473-486. - Selmaoui, B., Touitou, Y. 2003. Reproducibility of the circadian rhythms of serum cortisol and melatonin in healthy subjects: a study of three different 24-h cycles over six weeks. *Life Sciences*, **73:** 3339-3342. - Semm, P., Schneider, T., Vollrath, L. 1980. Effects of an Earth-strength magnetic field on electrical activity of pineal cells. *Nature*, **288**: 607-608. - Steliarova-Foucher, E., Stiller, C., Kaatsch, P., Berrino, F., Coebergh, J-W., Lacour, B. and Parkin, M., 2004. Geographical patterns and time trends of cancer incidence and survival among children and adolescents in Europe since the 1970s (the ACCIS project): an epidemiological study. *The Lancet*, **364**, 2097-2105. - Stevens, R. G. 1987. Electric power use and breast cancer: A hypothesis. Am. J. Epidemiol. 125: 556-561. - Stevens, R. G., Davis S. 1996. The melatonin hypothesis: Electric power and breast cancer. *Environ. Health Persp.* **104:** 135-140. - Swerdlow, A. 2003. Shift work and breast cancer: A critical review of the epidemiological evidence. Research Report 132, ISBN 071762708X, HSE Books. - Tan, D. X., Manchester, L. C., Reiter, R. J., Qi, W.-B., Zhang, M., Weintraub, S. T., Cabrera, J., Sainz, R. M., Mayo, J. C. 1999. Identification of highly elevated levels of Melatonin in bone marrow: its origin and significance. *Biochimica et Biophysica Acta*, **1472**: 206-214. - Tan, D. X., Manchester, L. C., Sainz, R., Mayo, J. C., Alvares, F. L., Reiter, R. J. 2003. Antioxidant strategies in protection against neurodegenerative disorders. *Expert Opinion on Therapeutic Patents*, **13**(10): 1513-1543. - Tauman, R., Zisapel, N., Laudon, M., Nehama, H., Sivan, Y. 2002. Melatonin production in infants. *Pediatric Neurology*, **26:** 379-382. - Touitou, Y., Lambrozo, J., Camus, F., Charbuy, H. 2003, Magnetic fields and the melatonin hypothesis: a study of workers chronically exposed to 50-Hz magnetic fields. *Am J Physiol Regul Integr Comp Physiol.*, **284**: R1529-R1535. - Verkasalo, P. K., Pukkala, E., Stevens, R. G., Ojamo, M., Rudanko, S-L. 1999. Inverse association between breast cancer incidence and degree of visual impairment in Finland. *Brit. J. Cancer*, **80**(9): 1459-1460. - Vijayalaxmi., Reiter, R. J., Herman, T. S., Meltz, M. L. 1996. Melatonin and radioprotection from genetic damage: In vivo/in vitro studies with human volunteers. *Mutation Research*, **371**: 221 228 - Vijayalaxmi., Reiter, R. J., Meltz, M. L., Herman, T. S. 1998. Melatonin: possible mechanisms involved in its 'radioprotective' effect. *Mutation Research*, **404**: 187-189. - Vijayalaxmi., Meltz, M. L., Reiter, R. J., Herman, T. S., Sree, K. K. 1999. Melatonin and protection from whole-body irradiation: survival studies in mice. *Mutation Research*, **425**: 21-27. - Wakatsuki, A., Izumiya, C., Okatani, Y. *et al.* 1999a. Oxidative damage in fetal rat brain induced by ischemia and subsequent reperfusion. *Biology of the Neonate*, **76**: 84-91. - Wakatsuki, A., Okatani, Y., Izumiya, C. *et al.*
1999b. Effect of ischemia-reperfusion on xanthine oxidase activity in fetal rat brain capillaries. *Am. J Obstetrics Gynecology*, **181**: 731-735. - Wakatsuki, A., Okatani, Y., Shinohara, K., Ikenoue, N., Fukaya, T. 2001. Melatonin protects against ischemia/reperfusion-induced oxidative damage to mitochondria in fetal rat brain. *Journal of Pineal Research*, **31**: 167-172. - Warman, G. R., Tripp, H. M., Warman, V. I., Arendt J. 2003a. Circadian neuroendocrine physiology and electromagnetic field studies: precautions and complexities. *Radiat Protect. Dosim.*, **106**: 369-373. - Warman, G. R., Tripp, H., Warman, V. L., Arendt, J. 2003b. Acute exposure to circularly polarized 50-Hz magnetic fields of 200-300 μT does not affect the pattern of melatonin secretion in young men. *The Journal of Clinical Endocrinology & Metabolism*, **88:** 5668-5673. - Welker, H. A, Semm, P., Willig, R. P., Commentz, J. C., Wiltschko, W., Vollrath, L., 1983. Effects of an artificial magnetic field on Serotonin N-Acetyltransferase activity and melatonin content of the rat pineal gland. *Experimental Brain Research*, **50**: 426-432. - Weydahl, A., Sothern, R. B., Cornélissen, G., Wetterberg, L. 2001. Geomagnetic activity influences the melatonin secretion at latitude 70° N. *Biomed. Pharmacother*, **55**: 57-62. - Wilson, B. W., Anderson, L. E., Hilton, I., Phillips, R. D. 1981. Chronic exposure to 60-Hz electric fields: Effects on pineal function in the rat. *Bioelectromagnetics*, **2**: 371-380. - Wilson, B. W., Chess, E. K., Anderson, L. E. 1986. 60-Hz Electric-Field Effects on Pineal Melatonin Rhythms: Time Course for Onset and Recovery. *Bioelectromagnetics*, 7: 239-242. - Wilson, B. W., Wright, C. W., Morris, J. E., Buschbom, R. L., Brown, D. P., Miller, D. L., Sommers-Flannigan, R., Anderson, L. E. 1990. Evidence for an Effect of ELF Electromagnetic Fields on Human Pineal Gland Function. *J. Pineal Res.*, **9**: 259-269. - Wilson, B. W., Matt, K. S., Morris, J. E., Sasser, L. B., Miller, D. L. and Anderson, L. E., 1999. Effects of 60 Hz magnetic field exposure on the pineal and hypothalamic-pituitary-gonadal axis in the Siberian hamster (*Phodopus sungorus*). *Bioelectromagnetics*, **20**, 224, 232. - Wood, A. W., Armstrong, S. M., Sait, M. L., Devine, L., Martin, M. J. 1998. Changes in human plasma melatonin profiles in response to 50 Hz magnetic field exposure. *J. Pineal Res.*, **25**: 116-127. - Yellon, S. M., 1994. Acute 60 Hz magnetic field exposure effects on the melatonin rhythm in the pineal gland and circulatin of the adult Djungarian hamster. *J. Pineal Res.* **16:** 136-144. - Yellon, S. M., Truong, H. N. 1998. Melatonin rhythm onset in the adult Siberian hamster: Influence of photoperiod but not 60-Hz magnetic field exposure on melatonin content in the pineal gland and in circulation. *Journal of Biological Rhythms*, **13:** 52-59. - Zeitzer, J. M., Dijk, D-J., Kronauer, R. E., Brown, E. N and Czeisler, C. A., 2000. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. *J Physiol.*, **526**:695-702. Table 1: Human population studies on effects of magnetic fields (EMFs) on pineal melatonin production (page 1 of 3) | Study No: | No. of cases/controls | Type of EMF exposure | Location and time of year | Key observations | |----------------------------------|---|---|--|--| | 1. Wilson <i>et al</i> . (1990) | 42 volunteers: 32 women; 10 men. Volunteers acted as own controls. | Volunteers used electric blankets
for approximately 8 weeks (AC
compared with DC) | Washington State, USA
Around winter solstice | No overall effect, but statistically significant 6-OHMS decrease (~25%) in 7 individuals using blankets with 50% higher MFs (mean 0.42 μ T) and which switched on and off at twice the rate of conventional blankets. | | 2. Pfluger <i>et al</i> . (1996) | 108 men: 66 engineers and 42 controls (train attendants & station managers with average exposure over 1 μT) Both groups work shifts | Electric railway lines, average exposure: 20 μT in most exposed 1 μT in least exposed (E) [†] | Switzerland
Early Autumn 1993 | Lowered 6-OHMS daytime levels (factor of 0.81) in engineers compared to controls but no difference in nocturnal levels. Evidence of a rebound of levels during leisure days. | | 3. Burch <i>et al.</i> (1998) | 142 men 20-60 yrs, mean age 41 yrs; 29 generation workers; 56 distribution workers and 57 controls (utility maintenance & admin. staff) | Electric Utility Workers Highest exposure occurred in generation workers: geometric mean 0.22 µT (E) | Colorado, USA
Morning 6-OHMS daily for
4 days. | Association between residential MF exposure and lower nocturnal 6-OHMS levels. Modest reductions in levels after work MF exposure. Greatest reductions (35%) when work and home exposures combined. | | 4. Wood <i>et al</i> . (1998) | 30 adult males 18-49 yrs.
Subjects acted as their own
controls. | Laboratory generated, circularly polarized, 20 µT, 50Hz magnetic fields, for three successive Friday night/Saturday mornings. | February – September over
a two year period 1994-
1996 | Exposure during a certain time window caused a mean 1 h delay in nightly melatonin onset in a subset of subjects. Square-wave fields produced more marked reduction in maximum melatonin levels compared with sinusoidal fields. | ## Table 1 contd: Human population studies on effects of magnetic fields on pineal melatonin production (page 2 of 3) | 5. Burch <i>et al</i> . (1999a) | 142 men as in study 3 | Electric Utility Workers Highest exposure bin >0.135 μT (E) | Colorado, USA
One year period | Reduction in 6-OHMS on the second and third days of occupational exposure to MF. Bigger effects (up to 35% reduction) with low RCMS* values. Negligible MF effects in subjects with high visible light exposure. | |---------------------------------|---|---|---|--| | 6. Burch <i>et al</i> . (2000) | 149 men mean age 44 y:
50 generation workers
60 distribution workers
39 controls (utility
maintenance & admin. staff) | Substations (3 phase – circularly polarized) Study compared ≤ 2 h with > 2 h to geometric mean fields in the range $0.04-0.27~\mu T~(E)$ | Colorado, USA
Jan – Sept 1997 | No effect due to 1-phase exposure. 6-OHMS reduction found due to exposure >2 h to 3-phase. Low RCMS fields had greatest effect. Up to 44% reduction in mean 6-OHMS between upper and lower exposure tertiles. | | 7. Juutilainen et al. (2000) | 60 women, mean age 44 y (workers) & 43 y (controls); 39 garment workers (8 of which did not operate machines but were 'possibly exposed'), 21 controls. | Sewing machine workers. Eye level exposures > 1 μT compared with 0.3 – 1 μT. Likelihood of exposure to switched fields. | Kuopio, Finland
3-week period around
spring equinox. | No week /weekend variations, but between 25 and 40% lower 6-OHMS levels in workers compared to controls. Authors suggest effects on melatonin may require chronic exposures. | | 8. Graham <i>et al.</i> (2000) | 30 men 18 – 35 y, mean age
22 y (volunteers acted as their
own controls) | Laboratory generated, circularly polarized, 28.3 µT, 60Hz magnetic fields for 4 consecutive nights | Missouri, USA
Spring and summer | Compared with controls, repeated nightly exposure was associated with reduced consistency of 6-OHMS levels. Results suggestive of cumulative effect. | | 9. Davis <i>et al</i> . (2001) | 203 women 20-70 y | Night time residential 60 Hz magnetic fields. Mean night time exposures were $< 0.2 \ \mu T$. | Washington State, USA.
Two 72 h periods at
different seasons over 14
months. | Higher bedroom MF associated with lower 6-OHMS levels during the same night,. Max 14% reduction in summer solstice for 4-fold increase in mean MF above 0.04 μT . | ## Table 1 contd: Human population studies on effects of magnetic fields on pineal melatonin production (page 3 of 3) | 10. Levallois <i>et al.</i> (2001) | 221 women subjects and 195
women controls. Mean age
45.5 y (subjects) & 45.8 y
(controls) | Subjects <150 m from 735 kV Power Lines. Controls >400 m away. Exposure quartiles 1^{st} vs. 4th: < 0.13 μ T & \geq 0.37 μ T; < 4.7 V/m & \geq 12.2 V/m. (E) | Quebec City, Canada.
6-OHMS sampled over two
consecutive days Feb - Dec
1998. | Decrease in 6-OHMS levels in relation to age and body mass index, more pronounced in women living near the powerlines. Maximum 30% reduction between highest and lowest quartiles. | |--|---|--
---|---| | 11. Burch <i>et al</i> (2002) | Study 1: 149 as in study 6.
Study 2: 77: 22 generation
workers; 29 distribution
workers; 23 controls | Cell telephone use in electric utility workers. Arithmetic mean exposure to tertiles: 1^{st} 0.05 μ T; 3^{rd} 0.5 μ T (E) | Colorado, USA. Total
overnight and post-work 6-
OHMS on three
consecutive workdays:
study 1, Jan-Sept '97; study
2, April-June '98 | Study 1 – no effect. Study 2 – exposure-related 6-OHMS reductions in cell phone use >25 mins per day. 40% reduction between highest and lowest exposure tertiles. A combined effect of telephone use and occupational exposure to 60 Hz magnetic fields was observed. | | 12. Touitou <i>et al</i> (2003). | 15 men 31.5- 46 y with exposures 0.1-2.6 μT compared with 15 men 34.5 - 47 y with exposures 0.004 - 0.092 μT | Chronic exposure in those who worked and lived near extra high voltage substations (E) | Paris, France
Autumn | No statistically significant differences in nocturnal plasma melatonin or the melatonin metabolite between the workers and controls. | | 13. Geomagnetic Burch <i>et al.</i> (1999b) | 132 male electric utility workers | Geomagnetic (GM) disturbances in conjunction with 60Hz MF exposure. Changes in GM fields > 30 nT compared with \leq 30 nT | Colorado, USA
March '95 – March '96 | Lower 6-OHMS levels on days with high geomagnetic activity. Effect enhanced when activity combined with high MF or low light levels. Statistically significant 20% reduction between < and >30 nT disturbance. | | 14. Geomagnetic Weydahl <i>et al</i> (2001) | 25 volunteers: 9 men, 16 women | Geomagnetic disturbances at latitude 70° N | Tromsø, Norway
Nov – Dec '92 to Sept '96 | Statistically significant trend in reduced melatonin with indices of geomagnetic disturbance over 3 h above 80 nT. Approx. 50% reduction in plasma melatonin for a 330 nT change in disturbance. | ^{† (}E) indicates associated exposure to powerline electric fields, although field values generally not given. *RCMS = Standardised Rate of Change Metric: low values correspond to temporarily stable fields. Figure 1. Interactions of the post-ganglionic sympathetic neuron with the pinealocyte and the synthesis of melatonin. Each of the numbered sites has been reported to be influenced by magnetic fields; 1-5 are reportedly reduced and 6 and 7 are increased. **Figure 2**. Neural connections between the eyes and the pineal gland. Magnetic fields could interact with cells at any of these sites. SCN = suprachiasmatic nuclei (biological clock).